- AMERICAN CONCRETE INSTITUTE. ACI 318: Building Code Requirements for Strucutral Concrete. Reported by ACI Committee 318, Detroit, Michigan, U.S.A, 2002.
- AMERICAN CONCRETE INSTITUTE. ACI 349: Code Requirements for Nuclear Safety-Related Concrete Structures and Comentary. Appendix
 B – Steel Embedments. Reported by ACI Committee 349, Detroit, Michigan, U.S.A, 1985.
- AMERICAN CONCRETE INSTITUTE. ACI 355: State-of-the-art Report on Anchorage to Concrete. ACI Manual of Concrete Pratice, Part 3, Reported by ACI Committee 355. p. 355.1R-1 – 355.1R-71, Detroit, Michigan, U.S.A, 1993.
- ARAÚJO, J. M. de, *Curso de Concreto Armado.* ed. Dunas, 2ª edição, volume 1, Rio Grande, Brasil, 2003.
- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 5738: Moldagem e cura de corpos-de-prova cilíndricos ou prismáticos de concreto. Rio de Janeiro, 1994.
- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 5739: Concreto Ensaio de compressão de corpos-de-prova cilíndricos. Rio de Janeiro, 1994.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 6118: Projeto de Estruturas de Concreto – Procedimento. Rio de Janeiro, 2003.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 7217: Agregados – Determinação da composição granulométrica. Rio de Janeiro, 1987.

- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 7222: Argamassas e Concretor – Determinação da resistência à tração por compressão diametral de corpos-de-prova cilíndricos. Rio de Janeiro, 1983.
- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 9776: Agregados
 Determinação da massa específica de agregados miúdos por meio do frasco de Chapman. Rio de Janeiro, 1987.
- BISCHOFF, P. H.; PERRY, S. H., Impact Behavior of Plain Concrete Loaded in Uniaxial Compression. Journal of Engineering Mechanics. V. 121, № 6, pp.685-693, June, 1995.
- BODE, H.; ROIK, K, Headed studs Embedded in concrete and loaded in tension. Anchorage to Concrete, SP103, Hasselwander ed., American Concrete Institute, Detroit, p.61-88, 1987.
- BURDETTE, E.; PERRY, T.; FUNK, R., *Tests of Undercut Anchors.* Anchorage to Concrete, SP103, Hasselwander ed., American Concrete Institute, Detroit, p.133-152, 1987.
- CEB Comitê Euro-Internacional du Béton, Fastenings to Concrete and Masonry Structures – State of the Art Report, Thomas Telford Services Ltda, 1994.
- CEB Comitê Euro-Internacional du Béton, *Design of Fastenings in Concrete Design Guide*, Thomas telford Services Ltda, 1997.
- CANADIAN STANDARDS ASSOCIATION. **S16-01: Limit States Design of Steel Structures.** Toronto, Ontario, CA, 2001.
- CANNON, R. W., *Straight Talk About Anchorage to Concrete Part I.* ACI Structural Journal, V.92, № 5, p.580-586, September-October, 1995.
- CLOUGH, R. W. & PENZIN, J., *Dynamics of Structures*. McGraw-Hill Book Company, 2^a ed., U.S.A, 1993.

- COLLINS, D. M.; KLINGNER, R. E.; POLYZOIS, D, Load-deflection Behavior of Cast-in-place and Retrofit Concrete Anchors Subjected to Static, Fatigue, and Impact Tensile Load. Research Report 1126-1, Project 3-5-86-1126, Center for Transportation Research, The University of Texas at Austin, Austin, p.1-217, 1989.
- COOK, R. A.; COLLINS, D. M.; KLINGNER, R. E.; POLYZOIS, D., Load-Deflection Behavior of Cast-in-Place and Retrofit Concrete Anchors. ACI Structural Journal, V.89, № 6, p.639-649, Nov-Dec, 1992.
- ELFAHAL, M. M.; KRAUTHAMMER, T.; OHNO, T.; BEPPU, M.; MINDESS, S,
 Size Effect for Normal Strength Concrete Cylinders Subjected to Axial Impact. International Journal of Impact Engineering. V. 31, p.461-481, 2004.
- ELFAHAL, M. M.; KRAUTHAMMER, T., *Dynamic Size Effect in Normal- and High-Strength Concrete Cylinders.* ACI Materials Journal. V. 102, Nº 2, p.77-85, March-April, 2005.
- ELIGEHAUSEN, R.; BALOGH, T., *Behavior of Fasteners Loaded in Tension in Cracked Reinforced Concrete.* ACI Structural Journal, V.92, Nº 3, p.365-379, May-June, 1995.
- FARROW, C. B.; FRIGUI, I.; KLINGNER, R. E., Tensile Capacity of Single Anchors in Concrete: Evaluation of Existings Formulas on an LRFD Basis. ACI Structural Journal, V.91, Nº 2, p.128-137, May-June, 1995.
- FUCHS, W.; ELIGEHAUSEN, R.; BREEN, J. E., Concrete Capacity Design (CCD) Approach for Fastenings to Concrete. ACI Structural Journal, V.92, Nº 1, p.73-94, January-February, 1995.
- **General Anchorage to Concrete.** Civil Design Standard N^o DS-C1.7.1, Tennessee Valley Authority, Knoxville, 1984.
- GOMES, J. T.; SHUKLA, A.; SHARMA, A, Static and Dynamic Behavior of Concrete and Granite in Tension With Damage. Theorical and Applied Fracture Mechanics. V. 36, pp.37-49, 2001.

- GROTE, D. L.; PARK, S. W.; ZHOU, M, *Dynamic Behavior of Concrete at High Strains Rates and Pressures: I. Experimental Characterization.* International Journal of Impact Engineering. V. 25, p.869-886, 2001.
- HASSELWANDER, G.; JIRSA, J.; BREEN, J., Strength and Behavior of Single Cast-in-Place Anchor Bolts Subject to Tension Load. Anchorage to Concrete, SP103, Hasselwander ed., American Concrete Institute, Detroit , p.203-232, 1987.
- HERZBRUCH, U. G., *Static and Shock-tension Loaded Headed Studs in Reinforced Concrete*. Nuclear Engineering and Design, V.150, p.491-495, 1994
- KLINGNER, R. E.; MENDONÇA, J.A., *Tensile Capacity of Short Anchor Bolts* and Welded Studs: A Literature Review. ACI Structural Journal, V.79, nº 6, p.270-279, July, 1982.
- KOFOLD-OLSEN, M.; NIELSEN, M. P., *The Strength of Anchors.*. Danish Society for Structural Science and Engineering, V.98, № 1, p.1-34, 1997.
- KRAUTHAMMER, T.; ELFAHAL, M. M.; LIM, J.; OHNO, T.; BEPPU, M.; MARKESET, G, Size Effect for High-Strength Concrete Cylinders Subjected to Axial Impact. International Journal of Impact Engineering. V. 31, p.1001-1016, 2003.
- MEIRA, M. T. da R. Resistência à Tração de Pinos de Ancoragem Influência de Borda, Comprimento de Aderência, Posição e Orientação do Pino. Dissertação de Mestrado, UFG, 2005.
- NEVILLE, A. D., *Propriedades do Concreto.* ed. Pini, 2ª edição, São Paulo, SP, 1997.
- NORRIS, C. H.; HANSEN, R. J.; HOLLEY JR., M. J.; NAMYET, S; MINAMI, J. K., *Structural Design for Dynamics Loads*. McGraw-Hill Book Company, U.S.A, 1959.

- OLIVEIRA, W. E. de. *Estudo Experimental da Resistência à Tração de Placas de Ancoragem Embutidas em Concreto*. Dissertação de Mestrado, PUC-Rio, 2003.
- OZBOLT, J.; ELIGEHAUSEN, R.; REINHARDT, H. W., *Size Effect on the Concrete Cone Pull-out Load.* International Journal of Fracture, V.95, p.391-404, 1999.
- PRIMAVERA, E. J; PINELI J.-P.; KALAJIAN, E. H., *Tensile Behavior of Cast-in-Place and Undercut Anchors in High-Strenght Concrete.*. ACI Structural Journal, V.94, Nº 5, p.583-594, September-October, 1997.
- RODRIGUEZ, M; ZHANG, Y.; LOTZE, D.; GRAVES III, H. L.; KLINGNER, R. E., *Dynamic Behavior of Anchors in Cracked and Uncracked Concrete: a Progress Report¹.* Nuclear Engineering Design, V.168, p.23-34, 1997.
- RODRIGUEZ, M.; LOTZE, D.; GROSS, J. H.; ZHANG, Y.; KLINGNER, R. E.; GRAVES III, H. L., *Dynamic Behavior of Tensile Anchors to Concrete.*. Report Prepared for the US Nuclear Regulatory Commission, 2001.
- RODRIGUEZ, M.; LOTZE, D.; GROSS, J. H.; ZHANG, Y.; KLINGNER, R. E.; GRAVES III, H. L., *Dynamic Behavior of Tensile Anchors to Concrete.*.ACI Structural Journal, V. 98, Nº 4, p.511-524, 2001.
- SALIM, H.; DINAN, R.; SHULL, J.; TOWNSEND, P.T., Shock Load Capacity of Concrete Expansion Anchoring Systems in Uncracked Concrete..
 Journal of Structural Engeneering, ASCE, V.131, nº 8, p.1206-1215, August, 2005.
- SHIRVANI, M.; KLINGNER, R. E.; GRAVES III, H. L., *Breakout Capacity of Anchors in Concrete Part 1: Tension*. ACI Structural Journal, V.101, Nº
 6, p.812-820, November-December, 2004.
- SILVA JR., J. F., *Resistência dos Materiais.* Ao Livro Técnico, 2ª edição, Rio de Janeiro, 1972.

Anexo A Análise da Granulometria a das Massas dos Agregados

A determinação da composição granulométrica dos agregados graúdo e miúdo para concreto foi realizada de acordo com a NBR 7217/1987. Foram determinados o módulo de finura e a dimensão máxima característica dos agregados. A quantidade de material utilizado foi de 3000 g de agregado graúdo e 1000 g de agregado miúdo. As Tabelas A.1 e A.2 mostram, respectivamente, os valores dos resíduos passantes e retidos nas peneiras utilizadas no ensaio para os agregados miúdo e graúdo.

Popoiras	Malha (mm)	Res	íduos	Resíduo Acumulado (%)		
Peneiras	Maina (IIIII)	(g) (%)		Passado	Retido	
• 3"	76,2					
2"	50,8					
• 11/2"	38,1					
1"	25,4					
• 3/4"	19,1					
1/2''	12,7					
• 3/8"	9,52					
1/4"	6,35			100		
• 4	4,76	12	1,2	98,8	1,2	
• 8	2,38	73	7,3	91,5	8,5	
• 16	1,19	207	20,7	70,8	29,2	
• 30	0,59	316	31,6	39,2	60,8	
• 50	0,297	275	27,5	11,7	88,3	
• 100	0,149	78	7,8	3,9	96, 1	
200	0,074	-	-	-	-	
Fundo	-	39	3,9	0		
TOTAL		1000	100		284,1	

Tabela A.1 – Valores de resíduos passantes e retidos - agregado miúdo.

Popoiras	Malba (mm)	Resi	íduos	Resíduo Acumulado (%)		
T enerras	Maina (min)	(g)	(%)	Passado	Retido	
• 3"	76,2	-	-	-	-	
2"	50,8					
• 11/2"	38,1	-	-	-	-	
1"	25,4			100		
• 3/4"	19,1	38	1,3	98,7	1,3	
1/2''	12,7					
• 3/8"	9,52	2317	77,2	21,5	78,5	
1/4''	6,35					
• 4	4,76	589	19,6	1,9	98, 1	
• 8	• 8 2,38				98, 1	
• 16	• 16 1,19				98, 1	
• 30	0,59				98, 1	
• 50	0,297				98,1	
• 100	0,149				98,1	
200	0,074				98, 1	
Fundo	-	56	1,9	0	-	
TOTAL		3000	100		686,9	

Tabela A.2 – Valores de resíduos passantes e retidos - agregado miúdo.

Módulo de finura:

O cálculo do modulo de finura do agregado foi feito somando-se todas as porcentagens retidas acumuladas, nas peneiras da série normal e dividindo esta soma por 100 %.

• Agregado miúdo

$$MF = \frac{284,1}{100} = 2,84 \tag{A.1}$$

• Agregado graúdo

$$MF = \frac{686.9}{100} = 6,87 \tag{A.2}$$

Dimensão máxima característica do agregado

A dimensão máxima característica do agregado é a porcentagem retida acumulada igual ou imediatamente inferior a 5% em massa correspondente à abertura nominal, em milímetros, da malha da peneira da série normal.

• Agregado miúdo

$$D_{\max} = 4,76\,mm \tag{A.3}$$

• Agregado graúdo

$$D_{\max} = 19,1mm \tag{A.4}$$

> Massa Específica Real do Agregado Miúdo

A massa específica real do agregado miúdo foi obtida por meio do Frasco de Chapman de acordo com a NBR 9776 e calculada segundo a seguinte expressão:

$$\gamma = \frac{500}{L - 200} \tag{A.5}$$

onde γ é a massa específica do agregado miúdo em g/cm^3 , e L é a leitura do frasco (volume ocupado pelo conjunto água – agregado miúdo) em cm^3 .

A massa inicial utilizada foi de 500 g e colocou-se água até a marca de $200 cm^3$ do frasco. A leitura feita foi de $392 cm^3$, obtendo-se o seguinte valor para a massa específica:

$$\gamma = \frac{500}{392 - 200} = 2,60 \, g/cm^3 \tag{A.6}$$

Massa Específica Real do Agregado Graúdo

A massa especifica real do agregado graúdo foi obtida utilizando-se o vaso sifonado com capacidade de 5.000 ml, sendo que a massa inicial utilizada foi de

1.000 g colocou-se água até a marca de 1.000 cm^3 do frasco e a leitura feita foi de 1.380 cm^3 , obtendo-se o seguinte valor para a massa específica:

$$\gamma = \frac{1000}{1380 - 1000} = 2,63 \, g/cm^3 \tag{A.7}$$

> Massa Específica Aparente do Agregado Miúdo

A massa especifica aparente foi determinada utilizando um recipiente retangular e calculada dividindo-se a massa de brita contida no recipiente pelo volume do recipiente.

$$V_{recipiente} = 15 \times 31,5 \times 31,5 \, cm^3 = 14883,75 \, cm^3 \tag{A.8}$$

$$P_{recipiente} = 7,3 kg \tag{A.9}$$

$$P_a = 31,1-7,3 = 23,8 \ kg = 23800 \ g \tag{A.10}$$

$$\gamma_a = \frac{23800}{14883,75} = 1,60 \, g/cm^3 \tag{A.11}$$

> Massa Específica Aparente do Agregado Graúdo

A massa especifica aparente foi determinada utilizando um recipiente retangular e calculada dividindo-se a massa de brita contida no recipiente pelo volume do recipiente.

$$P_b = 31,3-7,3 = 24,0 \, kg = 24000 \, g \tag{A.12}$$

$$\gamma_b = \frac{24000}{14883,75} = 1.61 \, g/cm^3 \tag{A.13}$$

Anexo B Ensaios Preliminares

Figura B.1 – Pino utilizado nos ensaios preliminares.

P25W100H100											
Impacto	v (m/s) σ_{max} (MPa)		$\Delta\sigma$ (MPa)	$\Delta \sigma$ (MPa) Δt (ms)		TC (MPa/s)					
Mola	4,43	283,8	272,5	31,2	3.983	8.735					
Perfil	4,43	340,9	329,5	19,1	7.867	17.253					
Borracha	4,43	343,1	331,4	19,2	7.871	17.262					
	P25W100H170										
Impacto	v (m/s) σ_{max} (MPa)		$\Delta\sigma$ (MPa)	∆t (ms)	TC (kN/s)	TC (MPa/s)					
Mola	5,77	341,9	330,7	29,0	5.199	11.402					
Perfil	5,77	468,9	456,8 19,5		10.681	23.423					
Borracha	5,77	456,1	444,9	444,9 17,0		26.171					
		P2	5W180 - MC	DLA							
h (m)	v (m/s)	σ_{max} (MPa)	$\Delta\sigma$ (MPa)	∆t (ms)	TC (kN/s)	TC (MPa/s)					
0,001	0,14	46,5	35,3	87,5	184	403					
0,1	1,40	135,3	124,1	35,1	1.612	3.535					
0,5	3,13	262,3	251,1	31,8	3.600	7.895					
1,0	4,43	362,9	351,7	29,4	5.455	11.963					
Área do pin	Área do pino = 4,56 cm^2										

Tabela B.1 – Resultados dos ensaios preliminares.

Anexo C Período Natural do Sistema

Os períodos naturais dos sistemas com pino P16 e bloco de concreto foram determinados experimentalmente através da utilização de um martelo de pequena massa. Com o martelo foi dado um impacto na extremidade do perfil metálico I e obtida a resposta força vs tempo. De posse das respostas no tempo foram obtidos os valores dos períodos naturais. A Figura C.1 e a Figura C.2 apresentam as respostas para os pinos P16 e blocos, respectivamente.

Figura C.1 – Resposta força vs tempo do sistema com pino P16: a) sem neoprene; b) com neoprene.

Figura C.2 – Resposta força vs tempo do sistema com bloco de concreto.

A Tabela C.1 e a Tabela C.2 mostram os valores dos períodos naturais para o sistema com pino P16 e bloco de concreto, respectivamente. Como esperado, a camada de neoprene não interfere no período natural do sistema com pino P16. Nota-se que o valor do período natural dos blocos é levemente inferior ao dos pinos.

Períodos Naturais - Pino P16 sem neoprene										
T1	T2	Т3	T4	T5	T6	T7	T8	Т9	T10	Media T (ms)
81	69	68	71	68	72	68	66	68	63	69
	Períodos Naturais - Pino P16 com neoprene									
T1	T2	Т3	T4	T5	T6	T7	T8	Т9	T10	Media T (ms)
79	69	73	70	72	67	69	66	67	69	70

Tabela C.1 – Resultados da determinação do período natural do sistema com pinos P16.

Tabela C.2 – Resultados da determinação do período natural do sistema com bloco de concreto.

Períodos Naturais - Bloco de Concreto											
T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 Média T (ms)									Média T (ms)		
59	57	58	53	61	58	47	55	50	51	55	

Anexo D Resultados dos Ensaios

Figura D.1 – Curvas típicas tensão vs. deformação específica obtidas nos ensaios dinâmicos dos chumbadores P16.

Figura D.1 – Curvas típicas tensão vs. deformação específica obtidas nos ensaios dinâmicos dos chumbadores P16 (continuação).

Figura D.2 – Curvas típica deformação específica vs. tempo obtidas nos ensaios dinâmicos dos chumbadores P16.

132

Figura D.2 – Curvas típica deformação específica vs. tempo obtidas nos ensaios dinâmicos dos chumbadores P16 (continuação).

Figura D.3 – Curvas força vs. deformação específica no chumbador obtidas nos ensaios dos blocos B22.

Figura D.3 – Curvas força vs. deformação específica no chumbador obtidas nos ensaios dos blocos B22 (continuação).

Figura D.3 – Curvas força vs. deformação específica no chumbador obtidas nos ensaios dos blocos B22 (continuação).

Figura D.4 – Curvas deformação específica no chumbador vs. tempo obtidas nos ensaios dos blocos B22.

Figura D-4 – Curvas deformação específica no chumbador vs. tempo obtidas nos ensaios dos blocos B22 (continuação).

Anexo E Superfícies de Ruptura

(a)

(b)

Figura E.1 – Superfície de ruptura dos blocos a) B22EST-11 e b) B22EST-9.

Figura E.2 – Superfície de ruptura dos blocos a) B22EST-I-5 e b) B22EST-I-6.

Figura E.3 – Superfície de ruptura dos blocos a) B22W180H100-MOLA-3 e b) B22W180H100-MOLA-4.

(a)

Figura E.4 – Superfície de ruptura dos blocos a) B22W100H220-7 e b) B22W100H220-8.

(c)

Figura E.5 – Superfície de ruptura dos blocos a) B22W180H220-1; b) B22W180H220-2 e c) B22W180H220-13.

	RAIO	Α	В	С	D		RAIO	А	В	С	D
	25	-7	-7	3,9	-1	7-(25	4	10	6	5
ဓ	62,5	24,5	6,7	26,5	7,7	220	62,5	31	40	29	23
Š	100	43,2	15.7	39,9	17,2	HC	100	47	56	46	33
2E	137.5	48.9	33.6	45.2	26.1	10(137.5	58	72	49	41
B2	175	52.3	48	57.8	39.9	Ň	175	67	72	64	61
	212.5	67.5	56.6	67.1	59.8	B22	212.5	70	_	64	66
	250	69.1	73.1	72.5	71.3	_	250	72	-	72	-
-	BAIO	A	B	C	D		RAIO	A	В	C	D
	25	21	-0.5	56	-10.2	ထု	25	-3	3	0	-3
T-11	62.5	17.9	22.9	34.5	14.8	20	62.5	31	30	37	6
	100	25.3	39.3	49.3	37.9	CH2	100	43	33	54	24
С Ш	137.5	28.2	49.4	54 1	46.6	100	137.5	60	41	64	35
322	175	41.6	55.3	66.4	65 5	Ň	175	70	52	70	38
	212.5	60.8	67	-	66 6	322	212.5	-	60	-	64
	250		68	_	-		250	_	67	_	-
	BAIO	Δ	B	C	П		BAIO	Δ	B	C	П
	25	7.5	11	4.2	16	H220-1	25	21		47	20
ŝ	20 60 5	-7,5	100	4,2	-4,0		20 60 5	2,1	0,0	-4,7	2,9
ΙŻ	100	20,0	12,0	30,3	10,3		100	24, I 47.0	32,5	10,0	22
S	100	42,7	27,4	47,6	20,9	80	100	47,0	49,9	33,0	20,1
221	137,5	64,8	40,4	49,6	46,7	B22W1	137,5	50.0	46,2	43,2	41,7
В	1/5	71,1	50,3	61,5	64,1		1/5	58,8	63,7	53,1	43,3
	212,5	-	72,5	73	65,2		212,5	68,2	64,2	63,8	53,9
-	250	-	-	-	73,4		250	-	67,3	64,5	59,3
	RAIO	A	В	C	D	0-2	RAIO	A	В	C	D
	25	1	-2	4,8	-2,6		25	-3,3	5,2	-3	-3,9
÷	62,5	24,1	23	25,6	24,1	422	62,5	28,1	16,6	32,3	4,9
ST	100	51	43,1	40,2	40,3	301	100	49,1	36	66,4	33
2E	137,5	60,5	59,3	56,8	49,4	V18	137,5	62,1	46	-	30,9
B	175	64	66,5	61,4	65,4	22V	175	60,8	54,9	-	42,9
	212,5	73,3	72,4	68	70,1	B2	212,5	73,2	51,8	-	64,5
	250	-	-	68,1	-		250	-	58	-	-
4	RAIO	Α	В	С	D	~	RAIO	Α	В	С	D
Q	25	-13,6	-12,2	-12,5	-12	-10	25	0,3	5,6	8,7	6
2-0	62,5	-0,8	10,2	1,2	0,2	220	62,5	38,4	17,9	30,8	23,2
m 10	100	17	25,1	25,2	32,7	HC	100	57,1	26,4	46,6	37,8
HO	137,5	31,9	47	45,8	45,7	18(137,5	64,7	35,7	58	51,8
/18	175	45,2	54,7	59,6	60,5	M	175	66,8	50,6	64,7	59
2	212,5	-	67,6	69,1	68,2	322	212,5	-	-	73	68,5
B2	250	-	72,6	70	-	_	250	-	-	69,9	70,8
-A-	RAIO	Α	В	С	D						
ОГ	25	-9	-0,3	-9,6	-3						
∑-	62,5	6,3	21,3	14,4	29,2						
100	100	18.1	31	33,4	47,2						
HC 4	137.5	41.6	42.6	38.6	52,7						
18(175	48.4	54.6	47.4	65.3						
Ň	212.5	56	72.9	67.6	71.6						
B2(250	56.5	-	-	-						
		,-			1						

Tabela E.1 – Dados das superfícies de ruptura dos blocos.